Monday, August 24, 2020
Attendance System
Understudy Attendance System Based On Fingerprint Recognition and One-to-Many Matching A proposition submitted in fractional ful? llment of the necessities for the level of Bachelor of Computer Application in Computer Science by Sachin (Roll no. 107cs016) and Arun Sharma (Roll no. 107cs015) Under the direction of : Prof. R. C. Tripathi Department of Computer Science and Engineering National Institute of Technology Rourkela-769 008, Orissa, India 2 . Devoted to Our Parents and Indian Scienti? c Community . 3 National Institute of Technology Rourkela Certi? cateThis is to ensure that the task entitled, ââ¬ËStudent Attendance System Based On Fingerprint Recognition and One-to-Many Matchingââ¬â¢ put together by Rishabh Mishra and Prashant Trivedi is a bona fide work completed by them under my watch and direction for the halfway ful? llment of the necessities for the honor of Bachelor of Technology Degree in Computer Science and Engineering at National Institute of Technology, Rourk ela. As far as I could possibly know, the issue typified in the venture has not been submitted to some other University/Institute for the honor of any Degree or Diploma.Date â⬠9/5/2011 Rourkela (Prof. B. Majhi) Dept. of Computer Science and Engineering 4 Abstract Our undertaking targets planning an understudy participation framework which could e? ectively oversee participation of understudies at organizations like NIT Rourkela. Participation is set apart after understudy identi? cation. For understudy identi? cation, a ? ngerprint acknowledgment based identi? cation framework is utilized. Fingerprints are viewed as the best and quickest strategy for biometric identi? cation. They are secure to utilize, interesting for each individual and doesn't change in oneââ¬â¢s lifetime. Unique finger impression acknowledgment is a full grown ? ld today, yet at the same time distinguishing individual from a lot of enlisted ? ngerprints is a period taking procedure. It was our duty to imp rove the ? ngerprint identi? cation framework for execution on enormous databases e. g. of a foundation or a nation and so on. In this task, numerous new calculations have been utilized e. g. sexual orientation estimation, key based one to many coordinating, expelling limit details. Utilizing these new calculations, we have built up an identi? cation framework which is quicker in usage than some other accessible today in the market. In spite of the fact that we are utilizing this ? ngerprint identi? cation framework for understudy identi? ation reason in our venture, the coordinating outcomes are acceptable to such an extent that it could perform very well on enormous databases like that of a nation like India (MNIC Project). This framework was actualized in Matlab10, Intel Core2Duo processor and examination of our one to numerous identi? cation was finished with existing identi? cation procedure I. e. balanced identi? cation on same stage. Our coordinating procedure runs in O(n+N) time when contrasted with the current O(Nn2 ). The ? ngerprint identi? cation framework was tried on FVC2004 and Veri? nger databases. 5 Acknowledgments We offer our significant thanks and obligation to Prof. B.Majhi, Department of Computer Science and Engineering, NIT, Rourkela for presenting the current theme and for their moving scholarly direction, productive analysis and significant recommendation all through the task work. We are additionally grateful to Prof. Pankaj Kumar Sa , Ms. Hunny Mehrotra and other sta? s in Department of Computer Science and Engineering for spurring us in improving the calculations. At last we might want to thank our folks for their help and allowing us remain for additional days to finish this task. Date â⬠9/5/2011 Rourkela Rishabh Mishra Prashant Trivedi Contents 1 Introduction 1. 1. 2 1. 3 1. 4 1. 1. 6 1. 7 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inspiration and Challenges . . . . . . . . . . . . . . . . . . . . . . . . Utilizing Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . What is ? ngerprint? . . . . . . . . . . . . . . . . . . . . . . . . . . . Why use ? ngerprints? . . . . . . . . . . . . . . . . . . . . . . . . . . . Utilizing ? ngerprint acknowledgment framework for participation the board . . . Association of the proposal . . . . . . . . . . . . . . . . . . . . . . . . 17 18 19 21 22 23 24 30 33 35 36 2 Attendance Management Framework 2. 2. 2. 3 2. 4 2. 5 Hardware â⬠Software Level Design . . . . . . . . . . . . . . . . . . . . Participation Management Approach . . . . . . . . . . . . . . . . . . . On-Line Attendance Report Generation . . . . . . . . . . . . . . . . . System and Database Management . . . . . . . . . . . . . . . . . . Utilizing remote system rather than LAN and bringing conveyability . . . 2. 5. 1 2. 6 Using Portable Device . . . . . . . . . . . . . . . . . . . . . . Examination with other understudy participation frameworks . . . . . . . . . . 3 Fingerprint Identi? cation System 3. 1 3. 2 How Fingerprint Recognition functions? . . . . . . . . . . . . . . . . . Unique mark Identi? cation System Flowchart . . . . . . . . . . . . . . 4 Fingerprint Enhancement 4. 1 4. 2 4. 3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Direction estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 6 CONTENTS 4. 4. 5 4. 6 4. 7 Ridge Frequency Estimation . . . . . . . . . . . . . . . . . . . . . . . Gabor ? lter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Binarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diminishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 38 39 40 41 42 43 44 45 46 47 50 51 53 54 55 56 57 59 60 5 Feature Extraction 5. 1 5. 2 Finding the Reference Point . . . . . . . . . . . . . . . . . . . . . . . Particulars Extraction and Post-Pro cessing . . . . . . . . . . . . . . . . 5. 2. 1 5. 2. 2 5. 2. 3 5. 3 Minutiae Extraction . . . . . . . . . . . . . . . . . . . . . . . Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . Expelling Boundary Minutiae . . . . . . . . . . . . . . . . . . Extraction of the key . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 3. 1 What is critical? . . . . . . . . . . . . . . . . . . . . . . . . . . Basic Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . Complex Key . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Partitioning of Database 6. 1 6. 2 6. 3 Gender Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . Classi? cation of Fingerprint . . . . . . . . . . . . . . . . . . . . . . . Apportioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Matching 7. 1 7. 2 7. 3 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Existing Matching Techniques . . . . . . . . . . . . . . . . . . . . . One to Many coordinating . . . . . . . . . . . . . . . . . . . . . . . . . . 7. 3. 1 7. 4 7. 5 Method of One to Many Matching . . . . . . . . . . . . . . . Performing key match and full coordinating . . . . . . . . . . . . . . . . Time Complexity of this coordinating procedure . . . . . . . . . . . . . . 8 Experimental Analysis 8. 1 8. 2 Implementation Environment . . . . . . . . . . . . . . . . . . . . . . Unique finger impression Enhancement . . . . . . . . . . . . . . . . . . . . . . . . 8. 2. 1 8. 2. 2 Segmentation and Normalization . . . . . . . . . . . . . . . . Direction Estimation . . . . . . . . . . . . . . . . . . . . . . 8. 2. 3 8. 2. 4 8. . 5 8. 3 CONTENTS Ridge Frequency Estimation . . . . . . . . . . . . . . . . . . . Gabor Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . Binarisation and Thinning . . . . . . . . . . . . . . . . . . . . 60 61 62 63 64 65 66 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8. 3. 1 Minutiae Extraction a nd Post Processing . . . . . . . . . . . . Particulars Extraction . . . . . . . . . . . . . . . . . . . . . . . Subsequent to Removing Spurious and Boundary Minutiae . . . . . . . 8. 3. 2 Reference Point Detection . . . . . . . . . . . . . . . . . . . . 8. 4 Gender Estimation and Classi? ation . . . . . . . . . . . . . . . . . . 8. 4. 1 8. 4. 2 Gender Estimation . . . . . . . . . . . . . . . . . . . . . . . . Classi? cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8. 5 8. 6 Enrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Coordinating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8. 6. 1 8. 6. 2 Fingerprint Veri? cation Results . . . . . . . . . . . . . . . . . Identi? cation Results and Comparison with Other Matching procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 70 73 74 75 79 8. 7 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Conclusion 9. 1 Outcomes of this Project . . . . . . . . . . . . . . . . . . . . . . . . . 10 Future Work and Expectations 10. 1 Approach for Future Work A Matlab capacities . . . . . . . . . . . . . . . . . . . . . . . Rundown of Figures 1. 1 2. 1 2. 2. 3 2. 4 2. 5 2. 6 2. 7 2. 8 3. 1 4. 1 4. 2 Example of an edge finishing and a bifurcation . . . . . . . . . . . . . . Equipment present in study halls . . . . . . . . . . . . . . . . . . . . . Study hall Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ER Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Level 0 DFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Level 1 DFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Level 2 DFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Convenient Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unique mark Identi? cation System Flowchart . . . . . . . . . . . . . . Direction Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . (a)Original Image, (b)Enhanced Image, (c)Binarised Image, (d)Thinned Image . . . . . . . . . . .
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.